電子商務(wù)網(wǎng)站營銷數(shù)據(jù)分析技術(shù)初探
作者:上海
3.神經(jīng)網(wǎng)絡(luò)
神經(jīng)網(wǎng)絡(luò)通過學(xué)習(xí)待分析數(shù)據(jù)中的模式來構(gòu)造模型。它對隱式類型進(jìn)行分類。圖像分析是神經(jīng)網(wǎng)絡(luò)最成功的應(yīng)用之一。神經(jīng)網(wǎng)絡(luò)用于模型化非線性的、復(fù)雜的或噪聲高的數(shù)據(jù)。一般神經(jīng)模型由三個層次組成:數(shù)據(jù)倉庫數(shù)據(jù)輸入、中間層(各種神經(jīng)元)和輸出。它通常用恰當(dāng)?shù)臄?shù)據(jù)庫示例來訓(xùn)練和學(xué)習(xí)、校正預(yù)測的模型,提高預(yù)測結(jié)果的準(zhǔn)確性。
4.數(shù)據(jù)挖掘中的關(guān)聯(lián)規(guī)則
關(guān)聯(lián)規(guī)則是數(shù)據(jù)挖掘的一個重要內(nèi)容,通常關(guān)聯(lián)規(guī)則反映的是數(shù)據(jù)間的定性關(guān)聯(lián)關(guān)系。如一個商品交易數(shù)據(jù)庫,一條記錄表示用戶一次購買的商品種類,每個屬性(A、B……)代表一種商品,每個屬性都是布爾類型的。一條關(guān)聯(lián)規(guī)則的例子是:{A、B}→{D}[2%][60%],規(guī)則的含義是“如果用戶購買商品A和B,那么也可能購買商品D,因為同時購買商品A、B和D的交易記錄占總交易數(shù)的2%而購買A和B的交易中,有60%的交易也包含D”。規(guī)則中60%是規(guī)則的信任度,2%是規(guī)則的支持度。數(shù)據(jù)挖掘就是要發(fā)現(xiàn)所有滿足用戶定義的最小信任度和支持度閥值限制的關(guān)聯(lián)規(guī)則。數(shù)據(jù)只是定性地描述一個交易是否包含某商品,而對交易量沒有定量描述,這種布爾類型數(shù)據(jù)間的關(guān)聯(lián)規(guī)則被稱為定性關(guān)聯(lián)規(guī)則。但數(shù)據(jù)記錄的屬性往往是數(shù)值型或字符型的,這些數(shù)據(jù)間也存在對決策有幫助的關(guān)聯(lián)規(guī)則,相對于定性關(guān)聯(lián)規(guī)則,這些規(guī)則被稱為定量關(guān)聯(lián)規(guī)則。
另外,數(shù)據(jù)挖掘目前仍面臨著數(shù)據(jù)質(zhì)量的問題。由于數(shù)據(jù)倉庫中的數(shù)據(jù)來自多個數(shù)據(jù)源,而在合并中存在很多障礙,如:沒有建立合并視圖所需的公共關(guān)鍵字;數(shù)據(jù)值相互抵觸;元數(shù)據(jù)的說明不完備或丟失;數(shù)據(jù)值的不潔凈等等。數(shù)據(jù)挖掘是在標(biāo)準(zhǔn)化的數(shù)據(jù)基礎(chǔ)上進(jìn)行的,因而這些都會嚴(yán)重破壞數(shù)據(jù)的準(zhǔn)確性,導(dǎo)致最終決策的失誤。所有這些問題都在等待著人們?nèi)グl(fā)掘更好的解決方法。(文/蔡景蕊 編選:中國電子商務(wù)研究中心)
文章熱詞:
作者:上海;資料來源:中國電子商務(wù)研究中心;發(fā)布用戶:chenz;發(fā)布時間:2011-5-12;