培訓(xùn)會(huì)員
熱門點(diǎn)擊:參觀考察 中層干部 研發(fā)管理 采購管理 海關(guān)事務(wù) 秘書文秘 人力資源管理 銷售營銷 績效管理 倉儲(chǔ)管理
您現(xiàn)在的位置: 森濤培訓(xùn)網(wǎng) >> 公開課 >> 大數(shù)據(jù)平臺(tái)搭建培訓(xùn),高性能計(jì)算培訓(xùn) >> 課程介紹

大數(shù)據(jù)平臺(tái)搭建與高性能計(jì)算最佳實(shí)戰(zhàn)

【時(shí)間地點(diǎn)】 2019年11月15-18日貴陽
【培訓(xùn)講師】 多名講師
【參加對象】 無特別限制
【參加費(fèi)用】 ¥5800元/人 (含培訓(xùn)費(fèi)、場地費(fèi)、資料費(fèi)、學(xué)習(xí)期間午餐),食宿可統(tǒng)一安排,費(fèi)用自理。請學(xué)員帶身份證復(fù)印件一張。
【會(huì)務(wù)組織】 森濤培訓(xùn)網(wǎng)(lailaliao.cn).廣州三策企業(yè)管理咨詢有限公司
【咨詢電話】 020-34071250;020-34071978(提前報(bào)名可享受更多優(yōu)惠)
【聯(lián) 系 人】 龐先生,鄧小姐;13378458028、18924110388(均可加微信)
【在線 QQ 】 568499978 培訓(xùn)課綱 課綱下載    
【溫馨提示】 本課程可引進(jìn)到企業(yè)內(nèi)部培訓(xùn),歡迎來電預(yù)約!
培訓(xùn)關(guān)鍵詞:大數(shù)據(jù)平臺(tái)搭建培訓(xùn),高性能計(jì)算培訓(xùn)

大數(shù)據(jù)平臺(tái)搭建與高性能計(jì)算最佳實(shí)戰(zhàn)(多名講師)課程介紹:

一、培訓(xùn)收益
通過此次課程培訓(xùn),可使學(xué)習(xí)者獲得如下收益:
1.深刻理解在“互聯(lián)網(wǎng)+”時(shí)代下大數(shù)據(jù)的產(chǎn)生背景、發(fā)展歷程和演化趨勢;
2.了解業(yè)界市場需求和國內(nèi)外最新的大數(shù)據(jù)技術(shù)潮流,洞察大數(shù)據(jù)的潛在價(jià)值;
3.理解大數(shù)據(jù)項(xiàng)目解決方案及業(yè)界大數(shù)據(jù)應(yīng)用案例,從而為企業(yè)在大數(shù)據(jù)項(xiàng)目中的技術(shù)選型及技術(shù)架構(gòu)設(shè)計(jì)提供決策參考;
4.掌握業(yè)界最流行的Hadoop與Spark大數(shù)據(jù)技術(shù)體系;
5.掌握大數(shù)據(jù)采集技術(shù);
6.掌握大數(shù)據(jù)分布式存儲(chǔ)技術(shù);
7.掌握NoSQL與NewSQL分布式數(shù)據(jù)庫技術(shù);
8.掌握大數(shù)據(jù)倉庫與統(tǒng)計(jì)機(jī)器學(xué)習(xí)技術(shù);
9.掌握大數(shù)據(jù)分析挖掘與商業(yè)智能(BI)技術(shù);
10.掌握大數(shù)據(jù)離線處理技術(shù);
11.掌握Storm流式大數(shù)據(jù)處理技術(shù);
12.掌握基于內(nèi)存計(jì)算的大數(shù)據(jù)實(shí)時(shí)處理技術(shù);
13.掌握大數(shù)據(jù)管理技術(shù)的原理知識(shí)和應(yīng)用實(shí)戰(zhàn);
14.深入理解大數(shù)據(jù)平臺(tái)技術(shù)架構(gòu)和使用場景;
15.嫻熟運(yùn)用Hadoop與Spark大數(shù)據(jù)技術(shù)體系規(guī)劃解決方案滿足實(shí)際項(xiàng)目需求;
16.熟練地掌握基于Hadoop與Spark大數(shù)據(jù)平臺(tái)進(jìn)行應(yīng)用程序開發(fā)、集群運(yùn)維管理和性能調(diào)優(yōu)技巧。

二、培訓(xùn)特色
1.課程培訓(xùn)業(yè)界最流行、應(yīng)用最廣泛的Hadoop與Spark大數(shù)據(jù)技術(shù)體系。強(qiáng)化大數(shù)據(jù)平臺(tái)的分布式集群架構(gòu)和核心關(guān)鍵技術(shù)實(shí)現(xiàn)、大數(shù)據(jù)應(yīng)用項(xiàng)目開發(fā)和大數(shù)據(jù)集群運(yùn)維實(shí)踐、以及Hadoop與Spark大數(shù)據(jù)項(xiàng)目應(yīng)用開發(fā)與調(diào)優(yōu)的全過程沙盤模擬實(shí)戰(zhàn)。
2.通過一個(gè)完整的大數(shù)據(jù)開發(fā)項(xiàng)目及一組實(shí)際項(xiàng)目訓(xùn)練案例,完全覆蓋Hadoop與Spark生態(tài)系統(tǒng)平臺(tái)的應(yīng)用開發(fā)與運(yùn)維實(shí)踐。課堂實(shí)踐項(xiàng)目以項(xiàng)目小組的形式進(jìn)行沙盤實(shí)操練習(xí),重點(diǎn)強(qiáng)化理解Hadoop與Spark大數(shù)據(jù)項(xiàng)目各個(gè)階段的工作重點(diǎn),同時(shí)掌握作為大數(shù)據(jù)項(xiàng)目管理者的基本技術(shù)與業(yè)務(wù)素養(yǎng)。
3.本課程的授課師資都是有著多年在一線從事Hadoop與Spark大數(shù)據(jù)項(xiàng)目的資深講師,采用原理技術(shù)剖析和實(shí)戰(zhàn)案例相結(jié)合的方式開展互動(dòng)教學(xué)、強(qiáng)化以建立大數(shù)據(jù)項(xiàng)目解決方案為主體的應(yīng)用開發(fā)、技術(shù)討論與交流咨詢,在學(xué)習(xí)的同時(shí)促進(jìn)講師學(xué)員之間的交流,讓每個(gè)學(xué)員都能在課程培訓(xùn)過程中學(xué)到實(shí)實(shí)在在的大數(shù)據(jù)技術(shù)知識(shí)體系,以及大數(shù)據(jù)技術(shù)應(yīng)用實(shí)戰(zhàn)技能,具備實(shí)際大數(shù)據(jù)應(yīng)用項(xiàng)目的動(dòng)手開發(fā)實(shí)踐與運(yùn)維管理部署能力。授課過程中,根據(jù)學(xué)員需求,增設(shè)交流環(huán)節(jié),可將具體工作中遇到的實(shí)際問題展開討論,講師會(huì)根據(jù)學(xué)員的實(shí)際情況微調(diào)授課內(nèi)容,由講師帶著全部學(xué)員積極討論,并給出一定的時(shí)間讓學(xué)員上臺(tái)發(fā)言,現(xiàn)場剖析問題的癥結(jié),規(guī)劃出可行的解決方案。

三、日程安排

第一天上午

 ◇ 大數(shù)據(jù)技術(shù)基礎(chǔ)
1. 大數(shù)據(jù)的產(chǎn)生背景與發(fā)展歷程
2. 大數(shù)據(jù)的4V特征,以及與云計(jì)算的關(guān)系
3. 大數(shù)據(jù)應(yīng)用需求以及潛在價(jià)值分析
4. 業(yè)界最新的大數(shù)據(jù)技術(shù)發(fā)展態(tài)勢與應(yīng)用趨勢
5. 大數(shù)據(jù)思維的轉(zhuǎn)變
6. 大數(shù)據(jù)項(xiàng)目的系統(tǒng)與技術(shù)選型,及落地實(shí)施的挑戰(zhàn)
7. “互聯(lián)網(wǎng)+”時(shí)代下的電子商務(wù)、制造業(yè)、交通行業(yè)、電信運(yùn)營商、銀行金融業(yè)、電子政務(wù)、移動(dòng)互聯(lián)網(wǎng)、教育信息化等行業(yè)應(yīng)用實(shí)踐與應(yīng)用案例介紹

 ◇ 業(yè)界主流的大數(shù)據(jù)技術(shù)方案
1. 大數(shù)據(jù)軟硬件系統(tǒng)全棧與關(guān)鍵技術(shù)介紹
2. 大數(shù)據(jù)生態(tài)系統(tǒng)全景圖
3. 主流的大數(shù)據(jù)解決方案介紹
4. Apache大數(shù)據(jù)平臺(tái)方案剖析
5. CDH大數(shù)據(jù)平臺(tái)方案剖析
6. HDP大數(shù)據(jù)平臺(tái)方案剖析
7. 基于云的大數(shù)據(jù)平臺(tái)方案剖析
8. 大數(shù)據(jù)解決方案與傳統(tǒng)數(shù)據(jù)庫方案比較
9. 國內(nèi)外大數(shù)據(jù)平臺(tái)方案與廠商對比

 ◇ 大數(shù)據(jù)計(jì)算模型(一)——批處理MapReduce
1. MapReduce產(chǎn)生背景與適用場景
2. MapReduce計(jì)算模型的基本原理
3. MapReduce作業(yè)執(zhí)行流程
4. MapReduce基本組件,JobTracker和TaskTracker
5. MapReduce高級編程應(yīng)用,Combiner和Partitioner
6. MapReduce性能優(yōu)化技巧
7. MapReduce案例分析與開發(fā)實(shí)踐操作

第一天 下午

 ◇ 大數(shù)據(jù)存儲(chǔ)系統(tǒng)與應(yīng)用實(shí)踐
1. 分布式文件系統(tǒng)HDFS產(chǎn)生背景與適用場景
2. HDFS master-slave系統(tǒng)架構(gòu)與讀寫工作原理
3. HDFS核心組件技術(shù)講解,NameNode與fsimage、editslog,DataNode與數(shù)據(jù)塊
4. HDFS Federation機(jī)制,viewfs機(jī)制,使用場景講解
5. HDFS高可用保證機(jī)制,SecondaryNameNode,NFS冷備份,基于zookeeper的HA方案
 
◇ 大數(shù)據(jù)實(shí)戰(zhàn)練習(xí)一
1. Hadoop平臺(tái)搭建、部署與應(yīng)用實(shí)踐,包含HDFS分布式文件系統(tǒng),YARN資源管理軟件,MapReduce計(jì)算框架軟件
2. HDFS shell命令操作
3. MapReduce程序在YARN上運(yùn)行

第二天 上午
 ◇ Hadoop框架與生態(tài)發(fā)展,以及應(yīng)用實(shí)踐操作

1. Hadoop的發(fā)展歷程
2. Hadoop 1.0的核心組件JobTracker,TaskTracker,以及適用范圍
3. Hadoop 2.0的核心組件YARN工作原理,以及與Hadoop 1.0的聯(lián)系與區(qū)別
4. Hadoop YARN的資源管理與作業(yè)調(diào)度機(jī)制
5. Hadoop 常用性能優(yōu)化技術(shù)

 ◇ 大數(shù)據(jù)計(jì)算模型(二)——實(shí)時(shí)處理/內(nèi)存計(jì)算 Spark
1. MapReduce計(jì)算模型的瓶頸
2. Spark產(chǎn)生動(dòng)機(jī)、基本概念與適用場景
3. Spark編程模型與RDD彈性分布式數(shù)據(jù)集的工作原理與機(jī)制
4. Spark實(shí)時(shí)處理平臺(tái)運(yùn)行架構(gòu)與核心組件
5. Spark寬、窄依賴關(guān)系與DAG圖分析
6. Spark容錯(cuò)機(jī)制
7. Spark作業(yè)調(diào)度機(jī)制
8. Spark standardalone,Spark on YARN運(yùn)行模式
9. Scala開發(fā)介紹與Spark常用Transformation函數(shù)介紹

第二天 下午

 ◇ 大數(shù)據(jù)倉庫查詢技術(shù)Hive、SparkSQL、Impala,以及應(yīng)用實(shí)踐
1. 基于MapReduce的大型分布式數(shù)據(jù)倉庫Hive基礎(chǔ)知識(shí)與應(yīng)用場景
2. Hive數(shù)據(jù)倉庫的平臺(tái)架構(gòu)與核心技術(shù)剖析
3. Hive metastore的工作機(jī)制與應(yīng)用
4. Hive 分區(qū)、分桶機(jī)制,Hive行、列存儲(chǔ)格式
5. 基于Spark的大型分布式數(shù)據(jù)倉庫SparkSQL基礎(chǔ)知識(shí)與應(yīng)用場景
6. Spark SQL實(shí)時(shí)數(shù)據(jù)倉庫的實(shí)現(xiàn)原理與工作機(jī)制
7. SparkSQL程序開發(fā)與DataFrame機(jī)制介紹
8. 基于MPP的大型分布式數(shù)據(jù)倉庫Impala基礎(chǔ)知識(shí)與應(yīng)用場景
9. Impala實(shí)時(shí)查詢系統(tǒng)平臺(tái)架構(gòu)、關(guān)鍵技術(shù)介紹,以及與Hive,SparkSQL的對比

 ◇ Hadoop集群運(yùn)維監(jiān)控工具
1. Hadoop運(yùn)維管理監(jiān)控系統(tǒng)Ambari工具介紹
2. 第三方運(yùn)維系統(tǒng)與工具Ganglia, Nagios

 ◇ 大數(shù)據(jù)實(shí)戰(zhàn)練習(xí)二
1.基于 Hadoop平臺(tái)搭建、部署與配置Spark集群,Spark shell環(huán)境實(shí)踐,Spark案例程序分析,Spark程序開發(fā)與運(yùn)行
2. 基于MapReduce的Hive數(shù)據(jù)倉庫實(shí)踐,Hive集群安裝部署,基于文件的Hive數(shù)據(jù)倉庫表導(dǎo)入導(dǎo)出與分區(qū)操作,Hive SQL操作,Hive客戶端操作
3. 基于Hive的SparkSQL shell實(shí)踐操作

第三天 上午
 ◇ 大數(shù)據(jù)計(jì)算模型(三)——流處理Storm, SparkStreaming

1. 流數(shù)據(jù)處理應(yīng)用場景與流數(shù)據(jù)處理的特點(diǎn)
2. 流數(shù)據(jù)處理工具Storm的平臺(tái)架構(gòu)與集群工作原理
3. Storm關(guān)鍵技術(shù)與并發(fā)機(jī)制
4. Storm編程模型與基本開發(fā)模式
5. Storm數(shù)據(jù)流分組
6. Storm可靠性保證與Acker機(jī)制
7. Storm應(yīng)用案例分析
8. 流數(shù)據(jù)處理工具Spark Streaming基本概念與數(shù)據(jù)模型
9. SparkStreaming工作機(jī)制
10. SparkStreaming程序開發(fā)介紹
11. Storm與SparkStreaming的對比

第三天 下午

 ◇ 大數(shù)據(jù)ETL操作工具,與大數(shù)據(jù)分布式采集系統(tǒng)
1. Hadoop與DBMS之間數(shù)據(jù)交互工具的應(yīng)用
2. Sqoop導(dǎo)入導(dǎo)出數(shù)據(jù)的工作原理
3. Flume-NG數(shù)據(jù)采集系統(tǒng)的數(shù)據(jù)流模型與系統(tǒng)架構(gòu)
4. Kafka分布式消息訂閱系統(tǒng)的應(yīng)用介紹與平臺(tái)架構(gòu),及其使用模式

 ◇ 面向OLTP型應(yīng)用的NoSQL數(shù)據(jù)庫及應(yīng)用實(shí)踐
1. 關(guān)系型數(shù)據(jù)庫瓶頸,以及NoSQL數(shù)據(jù)庫的發(fā)展,概念,分類,及其在半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)場景下的適用范圍
2. 列存儲(chǔ)NoSQL數(shù)據(jù)庫HBase簡介與數(shù)據(jù)模型剖析
3. HBase分布式集群系統(tǒng)架構(gòu)與讀寫機(jī)制,ZooKeeper分布式協(xié)調(diào)服務(wù)系統(tǒng)的工作原理與應(yīng)用
4. HBase表設(shè)計(jì)模式與primary key設(shè)計(jì)規(guī)范
5. 文檔NoSQL數(shù)據(jù)庫MongoDB簡介與數(shù)據(jù)模型剖析
6. MongoDB集群模式、讀寫機(jī)制與常用API操作
8.鍵值型NoSQL數(shù)據(jù)庫Redis簡介與數(shù)據(jù)模型剖析
9.Redis多實(shí)例集群架構(gòu)與關(guān)鍵技術(shù)
10.NewSQL數(shù)據(jù)庫技術(shù)簡介及其適用場景

 ◇ 大數(shù)據(jù)實(shí)戰(zhàn)練習(xí)三
1.Sqoop安裝、部署與配置,基于Sqoop、MySQL與Hive操作MySQL數(shù)據(jù)庫與Hive數(shù)據(jù)倉庫數(shù)據(jù)導(dǎo)入導(dǎo)出
2.Kafka安裝、部署與配置,基于Kafka創(chuàng)建和消費(fèi)topic實(shí)踐操作
3.Flume+HDFS+MapReduce/Spark大數(shù)據(jù)采集、存儲(chǔ)與分析實(shí)踐操作

 ◇ 大數(shù)據(jù)項(xiàng)目選型、實(shí)施、優(yōu)化等問題交流討論 ◇ 大數(shù)據(jù)項(xiàng)目的需求分析、應(yīng)用實(shí)施、系統(tǒng)優(yōu)化,以及解決方案等咨詢與交流討論

第四天

 ◇ 學(xué)習(xí)考核與業(yè)內(nèi)經(jīng)驗(yàn)交流

四、授課專家

蔣老師  清華大學(xué)博士,云計(jì)算專家 熟悉主流的云計(jì)算平臺(tái),并有商業(yè)與開源云計(jì)算平臺(tái)的實(shí)踐經(jīng)驗(yàn),對云計(jì)算關(guān)鍵技術(shù)有深刻了解和實(shí)踐經(jīng)驗(yàn),如分布式系統(tǒng)、虛擬化、分布式文件系統(tǒng)、云存儲(chǔ)等,參與并領(lǐng)導(dǎo)多個(gè)大型云計(jì)算項(xiàng)目。對大數(shù)據(jù)關(guān)鍵技術(shù)有深刻了解和實(shí)踐經(jīng)驗(yàn),如NoSQL數(shù)據(jù)庫、大數(shù)據(jù)處理、Hadoop、Hive、HBase、Spark等。

趙老師  清華大學(xué)計(jì)算機(jī)雙學(xué)士,甲骨文(中國)軟件系統(tǒng)有限公司高級技術(shù)顧問,大數(shù)據(jù)、數(shù)據(jù)庫、中間件技術(shù)和Java專家。15年IT行業(yè)從業(yè)經(jīng)歷,10年培訓(xùn)授課經(jīng)驗(yàn)。具有豐富的大數(shù)據(jù)方法論、數(shù)據(jù)科學(xué)、大數(shù)據(jù)生態(tài)圈技術(shù)知識(shí)和大數(shù)據(jù)規(guī)劃建設(shè)、應(yīng)用實(shí)施和客戶培訓(xùn)經(jīng)驗(yàn)。

張老師  天津大學(xué)軟件工程碩士,10多年的IT領(lǐng)域相關(guān)技術(shù)研究和項(xiàng)目開發(fā)工作,在長期軟件領(lǐng)域工作過程中,對軟件企業(yè)運(yùn)作模式有深入研究,熟悉軟件質(zhì)量保障標(biāo)準(zhǔn)ISO9003和軟件過程改進(jìn)模型CMM/CMMI,在具體項(xiàng)目實(shí)施過程中總結(jié)經(jīng)驗(yàn),有深刻認(rèn)識(shí)。通曉多種軟件設(shè)計(jì)和開發(fā)工具。對軟件開發(fā)整個(gè)流程非常熟悉,能根據(jù)項(xiàng)目特點(diǎn)定制具體軟件過程,并進(jìn)行項(xiàng)目管理和監(jiān)控,有很強(qiáng)的軟件項(xiàng)目組織管理能力。對C/C++ 、HTML 5、python、Hadoop、java、java EE、android、IOS、大數(shù)據(jù)、云計(jì)算有比較深入的理解和應(yīng)用,具有較強(qiáng)的移動(dòng)互聯(lián)網(wǎng)應(yīng)用需求分析和系統(tǒng)設(shè)計(jì)能力,熟悉Android框架、IOS框架等技術(shù),了解各種設(shè)計(jì)模式,能在具體項(xiàng)目中靈活運(yùn)用。

五、培訓(xùn)證書
本課程由中國信息化培訓(xùn)中心頒發(fā)《大數(shù)據(jù)平臺(tái)搭建與高性能計(jì)算高級工程師》證書,證書可作為專業(yè)技術(shù)人員職業(yè)能力考核的證明,以及專業(yè)技術(shù)人員崗位聘用、任職、定級和晉升職務(wù)的重要依據(jù)。


培訓(xùn)課綱 課綱下載


更多大數(shù)據(jù)平臺(tái)搭建與高性能計(jì)算最佳實(shí)戰(zhàn)相關(guān)課程:

課程專題大數(shù)據(jù)平臺(tái)搭建培訓(xùn),高性能計(jì)算培訓(xùn)


關(guān)于我們 | 法律聲明 | 服務(wù)條款 |熱門課程列表 | 培訓(xùn)計(jì)劃 | 網(wǎng)站地圖 | 文字站點(diǎn) | 加入收藏 | 用戶中心
固話:020-34071250、34071978 值班手機(jī):13378458028(可加微信) 傳真:020-34071978
地址:廣州市天河區(qū)東站路1號;常年法律顧問:北京市雙全律師事務(wù)所 鄧江華主任律師
粵ICP備13018032號 Copyright (c) 2019 All Rights Reserved 森濤培訓(xùn)網(wǎng) 三策咨詢.企業(yè)培訓(xùn)服務(wù)